Porous ceramic bone scaffolds for vascularized bone tissue regeneration.
نویسندگان
چکیده
Hydroxyapatite scaffolds with a multi modal porosity designed for use in tissue engineering of vascularized bone graft substitutes were prepared by three dimensional printing. Depending on the ratio of coarse (mean particle size 50 microm) to fine powder (mean particle size 4 microm) in the powder granulate and the sintering temperature total porosity was varied from 30% to 64%. While macroscopic pore channels with a diameter of 1 mm were created by CAD design, porosity structure in the sintered solid phase was governed by the granulate structure of the printing powder. Scaffolds sintered at 1,250 degrees C were characterized by a bimodal pore structure with intragranular pores of 0.3-0.4 microm and intergranular pores of 20 microm whereas scaffolds sintered at 1,400 degrees C exhibit a monomodal porosity with a maximum of pore size distribution at 10-20 microm. For in-vivo testing, matrices were implanted subcutaneously in four male Lewis rats. Scaffolds with 50% porosity and an average pore size of approximately 18 microm were successfully transferred to rats and vascularized within 4 weeks.
منابع مشابه
Poly (lactic-co-glycolic)/nanostructured merwinite porous composites for bone tissue engineering: II. structural and in vitro characterization
Several characteristics of a novel PLGA/Merwinite scaffold were examined in the present study to evaluate the possible applications in bone tissue regeneration. Physical and mechanical properties, as well as degradation behavior and in vitro bioactivity of porous scaffolds produced by solvent casting and particle leaching technique were also characterized. Results showed that incorporation of m...
متن کاملImproving the mechanical and bioactivity of hydroxyapatite porous scaffold ceramic with diopside/forstrite ceramic coating
Objective(s): Scaffolds are considered as biological substitutes in bone defects which improve and accelerate the healing process of surrounding tissue. In recent years a major challenge in biomaterials is to produce porous materials with properties similar to bone tissue. In this study, the natural bioactive hydroxyapatite scaffolds with nano Diopside /Forstrite coating was successfully synthe...
متن کاملFabrication of Porous Hydroxyapatite-Gelatin Composite Scaffolds for Bone Tissue Engineering
Background: engineering new bone tissue with cells and a synthetic extracellular matrix represents a new approach for the regeneration of mineralized tissues compared with the transplantation of bone (autografts or allografts). Methods: in this study, to mimic the mineral and organic component of natural bone, hydroxapatite (HA) and gelatin (GEL) composite scaffolds were prepared. The raw mater...
متن کاملEngineering Pre-vascularized Scaffolds for Bone Regeneration.
Survival of functional tissue constructs of clinically relevant size depends on the formation of an organized and uniformly distributed network of blood vessels and capillaries. The lack of such vasculature leads to spatio-temporal gradients in oxygen, nutrients and accumulation of waste products inside engineered tissue constructs resulting in negative biological events at the core of the scaf...
متن کاملA Review on Commonly Used Scaffolds in Tissue Engineering for Bone Tissue Regeneration
Introduction: Bone is one of the tissues that have a true potential for regeneration. However, sometimes the bone defects are so outsized that there is no chance of bone self-repair and restoration or the damage is such that it is not possible to repair with medical or surgical interventions. In these situations, bone grafts are the treatment of choice, but due to several obstacles, including l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of materials science. Materials in medicine
دوره 19 8 شماره
صفحات -
تاریخ انتشار 2008